INTRODUCCIÓN

 


En este blog encontraras información referente a la inteligencia artificial (IA) la cual nos ayuda a generar o construir conceptos, ideas y otros elementos a partir de una palabra o palabras compuestas referentes a un tema especifico.

DEFINICION: 

La inteligencia artificial (IA) se ha convertido en un término general para referirse a aplicaciones que realizan tareas complejas para las que antes eran necesaria la intervención humana, como la comunicación en línea con los clientes o jugar al ajedrez. El término a menudo se usa indistintamente junto con los nombres de sus subcampos, el aprendizaje automático y el aprendizaje profundo.

Sin embargo, hay ciertas diferencias. Por ejemplo, el machine learning se centra en la creación de sistemas que aprenden o mejoran su rendimiento en función de los datos que consumen. Es importante tener en cuenta que, aunque todo machine learning es IA, no toda la IA es machine learning.

Para obtener el valor completo de la IA, muchas empresas están haciendo inversiones significativas en equipos de ciencia de datos. La ciencia de datos combina estadísticas, informática y conocimiento empresarial para extraer valor de distintos orígenes de datos.


¿Cómo las empresas usan la IA?

De acuerdo con la Harvard Business Review, las empresas utilizan la IA principalmente para

  • Detectar y disuadir intrusiones de seguridad (44%)
  • Resolver problemas tecnológicos de los usuarios (41%)
  • Reducir el trabajo de la gestión de producción (34%)
  • Medir el cumplimiento interno en el uso de proveedores aprobados (34%)

Los beneficios y desafíos de poner en práctica la IA

Existen numerosas historias de éxito que demuestran el valor de la IA. Las organizaciones que incorporan el machine learning y las interacciones cognitivas a las aplicaciones y a los procesos empresariales tradicionales mejoran en mayor medida la experiencia y la productividad del usuario.

Sin embargo, la base no está lo suficientemente afianzada. Pocas compañías han implementado la IA de manera equilibrada por varias razones. Por ejemplo, si no usan informática en la nube, los proyectos de aprendizaje automático a menudo son costosos a nivel informático. También son complejos de diseñar y requieren una experiencia que es muy demandada pero cuya oferta es escasa. Saber cuándo y dónde incorporar estos proyectos, así como cuándo recurrir a terceros, ayudará a minimizar estas dificultades.



Comentarios